
Sieving Using Bucket Sort

Kazumaro Aoki Hiroki Ueda

This work was supported in part by TAO and by the CRYPTREC project.

Copyright 2004 c©NTT – p.1/18

Contents

Memory characteristics in PC

Sieving

Bucket sort

Proposed algorithm

Numbers

Conclusion

Copyright 2004 c©NTT – p.2/18

Memory Hierarchy of a PC

Pentium 4 Northwood
Line size Size Latency

Register (4 B) 32 B 1
2 pc

L1 cache 64 B 8 KB 2 pc

L2 cache 128 B 512 KB 7 pc

Main RAM (4 KB) ≈1 GB 12 pc + 6-12 bc
pc: processor cycle, bc: bus cycle

Copyright 2004 c©NTT – p.3/18

Random Memory Read Latency of a PC

1

2

4

8

16

32

64

128

256

512

1024

1KB 4KB 16KB 64KB 256KB 1MB 4MB 16MB 64MB 256MB

cl
oc

k
cy

cl
e

Northwood 2.0GHz
Northwood 2.53GHz

Copyright 2004 c©NTT – p.4/18

Number Field Sieve

Developed at early 1990s

The known fastest algorithm for general-type
integer factoring

Consists of many steps:

polynomial selection

sieving (most time-consuming part)

linear algebra

square root

Copyright 2004 c©NTT – p.5/18

Sieving

Find many (a, b) s.t.

|F (a, b)| =
∏

p<B, p: prime

pep, (F ∈ Z[x, y])

Use the following condition

p | F (a, b)⇒

{

p | F (a+p, b)

p | F (a, b+p)

Copyright 2004 c©NTT – p.6/18

line sieve

1: for b← 1 to Hb

2: initialize S[a] to log |F (a, b)| (−Ha ≤ ∀a < Ha)
3: for prime p← 2 to B
4: compute initial sieving point a ≥ −Ha from b and p
5: while a < Ha

6: S[a]← S[a]− log p
7: a← a + p
8: completely factor |F (a, b)| if S[a] is small

Copyright 2004 c©NTT – p.7/18

Memory Access while Sieving

(a, log p)s are generated while sieving

do “S[a]← S[a]− log p,” using (a, log p)

as are generated by step p

Focusing on memory in PC,
the behaviors are very different as the size of p

⇓
Classify primes according to their size.

Copyright 2004 c©NTT – p.8/18

Classification of Primes

Range Name Algorithm

p ≤ BT tiny prime sieving pattern

BT<p≤BS smallish prime block sieving

BS<p≤BL largish prime bucket sort

BL<p≤B large prime primality testing
and factoring

ex: BT = 5, BS = 219, BL = 226, B = 232

Largish primes behave like random!

Copyright 2004 c©NTT – p.9/18

Bucket Sort

♠K � ♥K � · · · � ♦A � ♣A

♥2 ♠7 ♠9 ♦2 · · ·

K Q J 10 9 8 7 6 5 4 3 2 A

Copyright 2004 c©NTT – p.10/18

Bucket Filling Algorithm

1: make all buckets empty
2: for prime p← BS + 1 to BL

3: compute initial sieving point a ≥ −Ha

4: while a < Ha

5: Throw (a, log p) into

⌊

a + Ha

r

⌋

-th bucket

6: a← a + p

original Step 5:
S[a]← S[a]− log p

Continued writes are performed on each bucket.

Copyright 2004 c©NTT – p.11/18

S[a] Update Algorithm

1: for i-th bucket (0 ≤ i < n)
2: for all (a, log p) in i-th bucket
3: S[a]← S[a]− log p

Continued reads are performed on each bucket.

a can only vary in the size of cache memory.

Copyright 2004 c©NTT – p.12/18

Memory Map

S
�
�

�
�

�
�

�
�

�
�

�
��:

cached
when S[] is updated

bucket

0 1 i n− 1
�� ���

�
�

�
��:

cached
when bucket filling

-�

r

Copyright 2004 c©NTT – p.13/18

Effective Condition

(size of S[] area) ≤
(size of cache)2

(size of cache line)

Example of Pentium 4 (Northwood):

L2 cache = 512KB, cache line = 128B

512KB2

128B
= 2GB

Copyright 2004 c©NTT – p.14/18

Franke’s gnfs-lasieve3e.tgz

available at
ftp://ftp.math.uni-bonn.de/people/franke/

mpqs4linux/gnfs-lasieve3e.tgz

time-stamped October 16, 2001.

Focusing on L1 cache, and using the similar
idea of bucket sort.

Copyright 2004 c©NTT – p.15/18

Numerical Example for Lattice Sieve

Name of # #bit #LP rel/MY

c164 545 2+2 29k

RSA-155 512 2+2 14k

Copyright 2004 c©NTT – p.16/18

Factoring Example

with Kida, Shimoyama, and Sonoda

Name of # #bit Method Date

c164 in 21826 + 1 545 GNFS Dec 19, 2003

c248 in 21642 + 1 822 SNFS Apr 4, 2004

Both factorings spent about two month using
100 PCs.

Copyright 2004 c©NTT – p.17/18

Conclusion

Focusing on the memory hierarchy
+

Using the idea of bucket sort
⇓

Several times faster sieving!

Copyright 2004 c©NTT – p.18/18

	Contents
	Memory Hierarchy of a PC
	Random Memory Read Latency of a PC
	Number Field Sieve
	Sieving
	line sieve
	Memory Access while Sieving
	Classification of Primes
	Bucket Sort
	Bucket Filling Algorithm
	$S[a]$ Update Algorithm
	Memory Map
	Effective Condition
	Franke's {	t gnfs-lasieve3e.tgz}
	Numerical Example for Lattice Sieve
	Factoring Example
	Conclusion

